关于举办“Sharp upper and lower bounds of the attractor dimension for 3D damped Euler-Bardina equations” 学术讲座的通知
2023-04-24      阅读次数: 555

报告时间:20234251000

报告地点:11-208

报告摘要:The dependence of the fractal dimension of global attractors for the damped 3D Euler--Bardina equations on the regularization parameter α>0 and Ekman damping coefficient γ>0 is studied. We present explicit upper bounds for this dimension for the case of the whole space, periodic boundary conditions, and the case of bounded domain with Dirichlet boundary conditions. The sharpness of these estimates when α→0 and γ→0 (which corresponds in the limit to the classical Euler equations) is demonstrated on the 3D Kolmogorov flows on a torus.

报告人:Anna Kostianko英国帝国理工学院研究员,主要从事无穷维动力系统惯性流形的研究,与E.TitiC.Chepyzhov等本领域的国际著名学者合作在惯性流形领域作出了很出色的工作。在Math. Ann.Anal. PDESIAM J. Math. Anal.J. Diff. Equ.Nonlinearity等国际等本领域知名学术期刊上发表学术论文数十篇。


打印